NANO ELECTRON TRANSISTOR

The discovery of the transistor has clearly had enormous impact, both intellectually and commercially, upon our lives and work. A major vein in the corpus of condensed matter physics, quite literally, owes its existence to this break through. It also led to the micro-miniaturization of electronics, which has permitted us to have powerful computers on our desktops that communicate easily with each other via the Internet. The resulting globalization of science, technology and culture is now transforming the ways we think and interact.Over the past 30 years, silicon technology has been dominated by Moore’s law: the density of transistors on a silicon integrated circuit doubles about every 18 months. The same technology that allows us to shrink the sizes of devices. 

To continue the increasing levels of integration beyond the limits mentioned above, new approaches and architectures are required .In today’s digital integrated circuit architectures, transistors serve as circuit switches to charge and discharge capacitors to the required logic voltage levels. It is also possible to encode logic states by the positions of individual electrons (in quantum dot single-electron transistors, for example) rather than by voltages. Such structures are scaleable to molecular levels, and the performance of the device improves as the size decreases. Artificially structured single electron transistors studied to date operate only at low temperature, but molecular or atomic sized single electron transistors could function at room temperature.Before we turn to the single atom transistors, the subject of this article, we need to learn about the Kondo effect.

CONCLUSION
A common thread between Stone Age, medieval, industrial and molecular nanotechnology is the exponential curve. This ever-accelerating curve representing human knowledge, science and technology will be driven a new way by what will probably become the first crude, pre-assembler nanotech products.

By treating atoms as discrete, bit like objects, molecular manufacturing will bring a digital revolution to the production of material objects. Working at the resolution limit of matter, it will enable the ultimate in miniaturization and performance. Research programs in chemistry, molecular biology and scanning probe microscopy are laying the foundations for a technology of molecular machine systems.

The motion of electrons in a transistor has been described as a complex dance. Switching action in one property of a transistor that has been demonstrated. Bardeen, Brattain and Shockley were concerned about the amplification properties of transistors they had invented. It remains to see whether amplification can be achieved to any experimentally observable extent in such a single atom transistor

No comments:

Post a Comment

leave your opinion