3D PASSWORDS

Users nowadays are provided with major password stereotypes such as textual passwords, biometric scanning, tokens or cards (such as an ATM) etc. Current authentication systems suffer from many weaknesses.

Textual passwords are commonly used; however, users do not follow their requirements. Users tend to choose meaningful words from dictionary or their pet names, girlfriends etc. Ten years back Klein performed such tests and he could crack 10-15 passwords per day. On the other hand, if a password is hard to guess, then it is often hard to remember. Users have difficulty remembering a password that is long and random appearing. So, they create short, simple, and insecure passwords that are susceptible to attack. Which make textual passwords easy to break and vulnerable to dictionary or brute force attacks. Graphical passwords schemes have been proposed. The strength of graphical passwords comes from the fact that users can recall and recognize pictures more than words. Most graphical passwords are vulnerable for shoulder surfing attacks, where an attacker can observe or record the legitimate user’s graphical password by camera. Token based systems such as ATMs are widely applied in banking systems and in laboratories entrances as a mean of authentication. However, Smart cards or tokens are vulnerable to loss or theft. Moreover, the user has to carry the token whenever access required. Biometric scanning is your "natural" signature and Cards or Tokens prove your validity. But some people hate the fact to carry around their cards, some refuse to undergo strong IR exposure to their retinas (Biometric scanning).

In this paper, we present and evaluate our contribution, i.e., the 3-D password. The 3-D password is a multifactor authentication scheme. To be authenticated, we present a 3-D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3-D environment constructs the user’s 3-D password. The 3-D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3-D virtual environment. The design of the 3-D virtual environment and the type of objects selected determine the 3-Dpassword key space.

BRIEF DESCRIPTION OF THE SYSTEM
The proposed system is a multi factor authentication scheme. It can combine all existing authentication schemes into a single 3Dvirtual environment. This 3D virtual environment contains several objects or items with which the user can interact. The user is presented with this 3D virtual environment where the user navigates and interacts with various objects. The sequence of actions and interactions toward the objects inside the 3D environment constructs the user’s 3Dpassword.The 3D password can combine most existing authentication schemes such as textual passwords, graphical passwords, and various types of biometrics into a 3D virtual environment.

The choice of what authentication schemes will be part of the user's 3D password reflects the user's preferences and requirements. A user who prefers to remember and recall a password might choose textual and graphical password as part of their 3D password. On the other hand users who have more difficulty with memory or recall might prefer to choose smart cards or biometrics as part of their 3D password. Moreover user who prefers to keep any kind of biometric data private might not interact with object that requires biometric information. Therefore it is the user's choice and decision to construct the desired and preferred 3D password.

WHAT IS A 3D PASSWORD?
The 3-D password is a multifactor authentication scheme. It can combine all existing authentication schemes into a single 3-D virtual environment. This 3-D virtual environment contains several objects or items with which the user can interact. The type of interaction varies from one item to another. The 3-D password is constructed by observing the actions and interactions of the user and by observing the sequences of such actions. It is the user’s choice to select which type of authentication techniques will be part of their 3-D password. This is achieved through interacting only with the objects that acquire information that the user is comfortable in providing and ignoring the objects that request information that the user prefers not to provide.

For example, if an item requests an iris scan and the user is not comfortable in providing such information, the user simply avoids interacting with that item. Moreover, giving the user the freedom of choice as to what type of authentication schemes will be part of their 3-D password and given the large number of objects and items in the environment, the number of possible 3-D passwords will increase. Thus, it becomes much more difficult for the attacker to guess the user’s 3-D password.

CONCLUSION
There are many authentication schemes in the current state. Some of them are based on user’s physical and behavioral properties, and some other authentication schemes are based on user’s knowledge such as textual and graphical passwords. Moreover, there are some other important authentication schemes that are based on what you have, such as smart cards. Among the various authentication schemes, textual password and token-based schemes, or the combination of both, are commonly applied. However, as mentioned before, both authentication schemes are vulnerable to certain attacks. Moreover, there are many authentication schemes that are currently under study and they may require additional time and effort to be applicable for commercial use.

The 3-D password is a multifactor authentication scheme that combines these various authentication schemes into a single3-D virtual environment. The virtual environment can contain any existing authentication scheme or even any upcoming authentication schemes by adding it as a response to actions performed on an object. Therefore, the resulted password space becomes very large compared to any existing authentication schemes.

The design of the 3-D virtual environment, the selections of objects inside the environment, and the object’s type reflect the resulted password space. It is the task of the system administrator to design the environment and to select the appropriate object that reflects the protected system requirements. Additionally, designing a simple and easy to use 3-D virtual environment is a factor that leads to a higher user acceptability of a 3-D password system.

The choice of what authentication schemes will be part of the user’s 3-D password reflects the user’s preferences and requirements. A user who prefers to remember and recall a password might choose textual and graphical passwords apart of their 3-D password. On the other hand, user’s who have more difficulty with memory or recall might prefer to choose smart cards or biometrics as part of their 3-D password. Moreover, users who prefer to keep any kind of biometrical data private might not interact with objects that require biometric information. Therefore, it is the user’s choice and decision to construct the desired and preferred 3-D password.

No comments:

Post a Comment

leave your opinion