Night Vision Technology - Engineering Seminar


Night Vision Technology
Introduction 
Night vision technology, by definition, literally allows one to see in the dark. Originally developed for military use, it has provided the United States with a strategic military advantage, the value of which can be measured in lives. Federal and state agencies now routinely utilize the technology for site security, surveillance as well as search and rescue. Night vision equipment has evolved from bulky optical instruments in lightweight goggles through the advancement of image intensification technology. 
The first thing you probably think of when you see the words night vision is a spy or action movie you've seen, in which someone straps on a pair of night-vision goggles to find someone else in a dark building on a moonless night. And you may have wondered "Do those things really work? Can you actually see in the dark?" 
The answer is most definitely yes. With the proper night-vision equipment, you can see a person standing over 200 yards (183 m) away on a moonless, cloudy night! Night vision can work in two very different ways, depending on the technology used. 

Image enhancement - This works by collecting the tiny amounts of light, including the lower portion of the infrared light spectrum, that are present but may be imperceptible to our eyes, and amplifying it to the point that we can easily observe the image. 
Thermal imaging - This technology operates by capturing the upper portion of the infrared light spectrum, which is emitted as heat by objects instead of simply reflected as light. Hotter objects, such as warm bodies, emit more of this light than cooler objects like trees or buildings. 
  In this article, you will learn about the two major night-vision technologies. We'll also discuss the various types of night-vision equipment and applications. But first, let's talk about infrared light. 

The Basics 
In order to understand night vision, it is important to understand something about light. The amount of energy in a light wave is related to its wavelength: Shorter wavelengths have higher energy. Of visible light, violet has the most energy, and red has the least. Just next to the visible light spectrum is the infrared spectrum. 
Infrared light can be split into three categories:

Near-infrared (near-IR) - Closest to visible light, near-IR has wavelengths that range from 0.7 to 1.3 microns, or 700 billionths to 1,300 billionths of a meter. 
Mid-infrared (mid-IR) - Mid-IR has wavelengths ranging from 1.3 to 3 microns. Both near-IR and mid-IR are used by a variety of electronic devices, including remote controls.

 
Thermal-infrared (thermal-IR) - Occupying the largest part of the infrared spectrum, thermal-IR has wavelengths ranging from 3 microns to over 30 microns. 

The key difference between thermal-IR and the other two is that thermal-IR is emitted by an object instead of reflected off it. Infrared light is emitted by an object because of what is happening at the atomic level. 
Atoms are constantly in motion. They continuously vibrate, move and rotate. Even the atoms that make up the chairs that we sit in are moving around. Solids are actually in motion! Atoms can be in different states of excitation. In other words, they can have different energies. If we apply a lot of energy to an atom, it can leave what is called the ground-state energy level and move to an excited level. The level of excitation depends on the amount of energy applied to the atom via heat, light or electricity. 
An atom consists of a nucleus (containing the protons and neutrons) and an electron cloud. Think of the electrons in this cloud as circling the nucleus in many different orbits. Although more modern views of the atom do not depict discrete orbits for the electrons, it can be useful to think of these orbits as the different energy levels of the atom. In other words, if we apply some heat to an atom, we might expect that some of the electrons in the lower energy orbitals would transition to higher energy orbitals, moving farther from the nucleus. 

Once an electron moves to a higher-energy orbit, it eventually wants to return to the ground state. When it does, it releases its energy as a photon -- a particle of light. You see atoms releasing energy as photons all the time. For example, when the heating element in a toaster turns bright red, the red color is caused by atoms excited by heat, releasing red photons. An excited electron has more energy than a relaxed electron, and just as the electron absorbed some amount of energy to reach this excited level, it can release this energy to return to the ground state. This emitted energy is in the form of photons (light energy). The photon emitted has a very specific wavelength (color) that depends on the state of the electron's energy when the photon is released. 
Anything that is alive uses energy, and so do many inanimate items such as engines and rockets. Energy consumption generates heat. In turn, heat causes the atoms in an object to fire off photons in the thermal-infrared spectrum. The hotter the object, the shorter the wavelength of the infrared photon it releases. An object that is very hot will even begin to emit photons in the visible spectrum, glowing red and then moving up through orange, yellow, blue and eventually white. Be sure to read How Light Bulbs Work, How Lasers Work and How Light Works for more detailed information on light and photon emission.

Thermal Imaging and Image Enhancement 
Here's how thermal imaging works: 
A special lens focuses the infrared light emitted by all of the objects in view. 
The focused light is scanned by a phased array of infrared-detector elements. The detector elements create a very detailed temperature pattern called a thermogram. It only takes about one-thirtieth of a second for the detector array to obtain the temperature information to make the thermogram. This information is obtained from several thousand points in the field of view of the detector array. 
The thermogram created by the detector elements is translated into electric impulses. 
The impulses are sent to a signal-processing unit, a circuit board with a dedicated chip that translates the information from the elements into data for the display. 
The signal-processing unit sends the information to the display, where it appears as various colors depending on the intensity of the infrared emission. The combination of all the impulses from all of the elements creates the image. 

Types of Thermal Imaging Devices 
Most thermal-imaging devices scan at a rate of 30 times per second. They can sense temperatures ranging from -4 degrees Fahrenheit (-20 degrees Celsius) to 3,600 F (2,000 C), and can normally detect changes in temperature of about 0.4 F (0.2 C).

There are two common types of thermal-imaging devices: 
Un-cooled - This is the most common type of thermal-imaging device. The infrared-detector elements are contained in a unit that operates at room temperature. This type of system is completely quiet, activates immediately and has the battery built right in. 

Cryogenically cooled - More expensive and more susceptible to damage from rugged use, these systems have the elements sealed inside a container that cools them to below 32 F (zero C). The advantage of such a system is the incredible resolution and sensitivity that result from cooling the elements. Cryogenically-cooled systems can "see" a difference as small as 0.2 F (0.1 C) from more than 1,000 ft (300 m) away, which is enough to tell if a person is holding a gun at that distance! 

While thermal imaging is great for detecting people or working in near-absolute darkness, most night-vision equipment uses image-enhancement technology. 

Image Enhancement 
Image-enhancement technology is what most people think of when you talk about night vision. In fact, image-enhancement systems are normally called night-vision devices (NVDs). NVDs rely on a special tube, called an image-intensifier tube, to collect and amplify infrared and visible light. The image-intensifier tube changes photons to electrons and back again.

Here's how image enhancement works: 
A conventional lens, called the objective lens, captures ambient light and some near-infrared light. 
The gathered light is sent to the image-intensifier tube. In most NVDs, the power supply for the image-intensifier tube receives power from two N-Cell or two "AA" batteries. The tube outputs a high voltage, about 5,000 volts, to the image-tube components. 
The image-intensifier tube has a photocathode, which is used to convert the photons of light energy into electrons. 
As the electrons pass through the tube, similar electrons are released from atoms in the tube, multiplying the original number of electrons by a factor of thousands through the use of a microchannel plate (MCP) in the tube. An MCP is a tiny glass disc that has millions of microscopic holes (microchannels) in it, made using fiber-optic technology. The MCP is contained in a vacuum and has metal electrodes on either side of the disc. Each channel is about 45 times longer than it is wide, and it works as an electron multiplier. 

When the electrons from the photo cathode hit the first electrode of the MCP, they are accelerated into the glass microchannels by the 5,000-V bursts being sent between the electrode pair. As electrons pass through the microchannels, they cause thousands of other electrons to be released in each channel using a process called cascaded secondary emission. Basically, the original electrons collide with the side of the channel, exciting atoms and causing other electrons to be released. These new electrons also collide with other atoms, creating a chain reaction that results in thousands of electrons leaving the channel where only a few entered. An interesting fact is that the microchannels in the MCP are created at a slight angle (about a 5-degree to 8-degree bias) to encourage electron collisions and reduce both ion and direct-light feedback from the phosphors on the output side.

At the end of the image-intensifier tube, the electrons hit a screen coated with phosphors. These electrons maintain their position in relation to the channel they passed through, which provides a perfect image since the electrons stay in the same alignment as the original photons. The energy of the electrons causes the phosphors to reach an excited state and release photons. 

Night-vision images are known for their eerie green tint
These phosphors create the green image on the screen that has come to characterize night vision 
The green phosphor image is viewed through another lens, called the ocular lens, which allows you to magnify and focus the image. The NVD may be connected to an electronic display, such as a monitor, or the image may be viewed directly through the ocular lens. 
Generations 

Generation 0 - The earliest (1950's) night vision products were based on image conversion, rather than intensification. They required a source of invisible infrared (IR) light mounted on or near the device to illuminate the target area. 
Generation 1 - The "starlight scopes" of the 1960's (Vietnam Era) have three image intensifier tubes connected in a series. These systems are larger and heavier than Gen 2 and Gen 3. The Gen 1 image is clear at the center but may be distorted around the edges. (Low-cost Gen 1 imports are often mislabeled as a higher generation. 
Figure 1 illustrates first-generation night vision. [Not a great topic sentence but it does has the advantage of calling attention to the figure.] Incoming light is collimated by fiber optic plates before impacting a photocathode t which releases electrons, which in turn impact a phosphor screen. The excited screen emits green light into a second fiber optic plate, and the process is repeated. The complete process is repeated three times providing an overall gain of 10,000.

Generation 2 - The micro channel plate (MCP) electron multiplier prompted Gen 2 development in the 1970s. The "gain" provided by the MCP eliminated the need for back-to-back tubes - thereby improving size and image quality. The MCP enabled development of hand held and helmet mounted goggles. 
Second-generation image intensification significantly increased gain and resolution by employing a microchannel plate. Figure 2 depicts the basic configuration. [These two sentences could have been combined: "Figure2 depicts how second-generation image ... plate."] The microchannel plate is composed of several million microscopic hollow glass channels fused into a disk. Each channel, approximately 0.0125 mm in diameter, is coated with a special semiconductor which easily liberates electrons. A single electron entering a channel initiates an avalanche process of secondary emission, under influence of an applied voltage, freeing hundreds of electrons. These electrons, effectively collimated by the channel, increase the resolution of the device. With additional electron optics, details as fine as 0.025 mm can be realized (half the diameter of a human hair). 

Current image intensifiers incorporate their predecessor's resolution with additional light amplification. The multialkali photocathode is replaced with a gallium arsenide photocathode; this extends the wavelength sensitivity of the detector into the near infrared. The moon and stars provide light in these wavelengths, which boosts the effectively available light by approximately 30%, bringing the total gain of the system to around 30,000. 
[No topic sentence. Indeed one might have moved this material to the front in a more dramatic way, perhaps by calling attention to the movie `Silence of the Lambs.'] slight green tint similar to some sunglasses. The apparent lighting of the landscape on a dark night is comparable to what the unaided eye would see on a clear winter night with fresh snow on the ground and a full moon. 
Generation 3 - Two major advancements characterized development of Gen 3 in the late 1970s and early 1980s: the gallium arsenide (GaAs) photocathode and the ion-barrier film on the MCP. The GaAs photocathode enabled detection of objects at greater distances under much darker conditions. The ion-barrier film increased the operational life of the tube from 2000 hours (Gen 2) to 10,000 (Gen 3), as demonstrated by actual testing and not extrapolation. 
Generation 4 - for a good explanation of this commonly misunderstood advancement in night vision technology. 
When discussing night vision technology, you also may hear the term "Omnibus" or "OMNI". The U.S. Army procures night vision devices through multi-year/multi-product contracts referred to as "Omnibus" - abbreviated as "OMNI". For each successive OMNI contract, ITT has provided Gen 3 devices with increasingly higher performance. ( See range detection chart directly below) Therefore, Gen 3 devices may be further defined as OMNI 3, 4, 5, etc. Current Omnibus contract as of 2006 is OMNI 7. 

If you're using night vision to find a lost person in the woods, to locate boats or buoys on the water, or to stargaze into the wilderness, you need Generation 3 because it creates the best images when there is very little ambient light. Generation 2 may be the choice in situations with higher levels of ambient light.

Characteristics of Night Vision 
Using intensified night vision is different from using regular binoculars and/or your own eyes. Below are some of the aspects of night vision that you should be aware of when you are using an image intensified night vision system. 

Textures, Light and Dark
Objects that appear light during the day but have a dull surface may appear darker, through the night vision unit, than objects that are dark during the day but have a highly reflective surface. For example, a shinny dark colored jacket may appear brighter than a light colored jacket with a dull surface. 

Depth Perception 
Night vision does not present normal depth perception. 

Fog and Rain 
Night vision is very responsive to reflective ambient light; therefore, the light reflecting off of fog or heavy rain causes much more light to go toward the night vision unit and may degrade its performance. 

Honeycomb
 This is a faint hexagonal pattern which is the result of the manufacturing process. 

Black Spots 
A few black spots throughout the image area are also inherent characteristics of all night vision technology. These spots will remain constant and should not increase in size or number. See example below of an image with black spots. 
* Do not be concerned if you see this feature-it is an inherent characteristic found in light amplification night vision systems that incorporate a microchannel plate in the intensifier

Equipment and Applications
Night-vision equipment can be split into three broad categories: 

Scopes - Normally handheld or mounted on a weapon, scopes are monocular (one eye-piece). Since scopes are handheld, not worn like goggles, they are good for when you want to get a better look at a specific object and then return to normal viewing conditions. 

Goggles - While goggles can be handheld, they are most often worn on the head. Goggles are binocular (two eye-pieces) and may have a single lens or stereo lens, depending on the model. Goggles are excellent for constant viewing, such as moving around in a dark building. 

Cameras - Cameras with night-vision technology can send the image to a monitor for display or to a VCR for recording. When night-vision capability is desired in a permanent location, such as on a building or as part of the equipment in a helicopter, cameras are used. Many of the newer camcorders have night vision built right in. 

Applications 

  • Common applications for night vision include: 
  • Military 
  • Law enforcement 
  • Hunting 
  • Wildlife observation 
  • Surveillance 
  • Security 
  • Navigation 
  • Hidden-object detection 
  • Entertainment 

The original purpose of night vision was to locate enemy targets at night. It is still used extensively by the military for that purpose, as well as for navigation, surveillance and targeting. Police and security often use both thermal- imaging and image-enhancement technology, particularly for surveillance. Hunters and nature enthusiasts use NVDs to maneuver through the woods at night. 
Detectives and private investigators use night vision to watch people they are assigned to track. Many businesses have permanently-mounted cameras equipped with night vision to monitor the surroundings. 
A really amazing ability of thermal imaging is that it reveals whether an area has been disturbed -- it can show that the ground has been dug up to bury something, even if there is no obvious sign to the naked eye. Law enforcement has used this to discover items that have been hidden by criminals, including money, drugs and bodies. Also, recent changes to areas such as walls can be seen using thermal imaging, which has provided important clues in several cases.

Many people are beginning to discover the unique world that can be found after darkness falls. If you're out camping or hunting a lot, chances are that night-vision devices can be useful to you -- just be sure to get the right type for your needs.

5 comments:

  1. Ashish Agarwal
    ashishagarwal_30@yahoo.in
    Studying third year mechanical engineering

    ReplyDelete
  2. Ashish Agarwal
    ashishagarwal_30@yahoo.in
    Third year mechanical engineering

    ReplyDelete
  3. sir plz send me latest seminar reports related to electronics and communication

    ReplyDelete

leave your opinion